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The paper presents a possible means of solving the problem of optimizing impedance
locations on the walls of an acoustic cavity with rigid walls, when the goal is to reduce the
sound level generated by a velocity source inside the cavity. First, an elementary analytical
study of an academic situation shows how to deal with the problem. The methodology is
then used on a finite element model of the cavity. Severe conditions constitute the
framework because the situation is that of a large room (approx. 80 m3) with a low
frequency anti-resonance (arbitrarily around 70 Hz), with a limited number of pieces of
absorptive material on the walls, called here impedances or impedance patches, and finally
because the study begins with the search for optimal locations along a line on a face of
the cavity. Under these conditions and until now, an attenuation of only a few dB has been
obtained when the sound level minimization occurs at a small number of points, called here
microphones, and less than one dB on a large number of microphones. Upon taking into
consideration the narrow framework, these results encourage more extensive investigations.
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1. ORIGIN OF THE SUBJECT AND INTRODUCTORY APPROACH

When an external sound source radiates noise inside a cavity with yielding walls, the sound
level can be reduced by passive means such as improving the acoustic insulation of walls
(weighting or doubling them) and damping the cavity (installing resonators or absorptive
material), or with the help of active means such as active acoustic control (where
loudspeakers are the secondary source) or active structural acoustic control (where
actuators on the structure reduce the noise radiated), or by using both means. Here, control
has to reduce sound level in an acoustic cavity coupled with a vibratory structure—its
external radiation is not to be taken into consideration in the present context—representing
a moving vehicle, particularly the satellite compartment of the Ariane 5 launcher.

Attenuation techniques are well-known, at least for a stationary deterministic field.
Specific constraints for vehicles concern transported hardware, i.e., weight and volume.
Concerning active acoustic control, the secondary sources are usually voluminous, need
electrical supply and digital or analog systems for signal processing on racks. With this
in mind and in an acoustic–structure coupling similar to the one here, it has already been
shown that selection strategies and source location optimization result in limiting the
number of sources, with a given attenuation to be reached [1–3]. For passive techniques,
weight and volume also exist, leading one to try a transposition of location optimization
from the active acoustic control domain to the passive acoustic control domain. Some
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Figure 1. Motivation of the study.

authors have published work on the effects of impedance locations on the acoustic field
in a cavity, when the impedances originate from Helmholtz resonators (see, e.g. references
[4, 5]), but their goal was not location optimization by conventional gradient processing,
which constitutes the purpose of the present paper.

More precisely the question is as follows: is it possible to optimize the location and
number of passive absorbing devices, given their geometrical dimensions and their
admittances, in order to minimize, in a cavity with yielding walls, the acoustic level caused
by an external source? To this end, how can continuous optimization processing with a
limited number of available measurements be used?

The proposed deterministic and harmonic approach is a cornerstone of the study
concerning the satellite compartment of the Ariane 5 launcher, but it cannot constitute the
entire approach. Indeed the passive devices currently used act partly with non-linear
phenomena and the actual external excitation is, in its simplest form, random and
stationary. Figure 1 shows the motivation for the present study and Figure 2 gives an
elementary configuration of the actual situation.

The paper presents the approach to the problem in two steps. First, an analytical
technique in a half-space indicates the natural path: integral formulation with a simple
layer approximated by collocation and then by an asymptotic form, giving access to
solutions of the optimization from an infinite number of data, called here measurements.
The analytical form was also the starting point for reflection on how results could be
obtained from a finite number of measurements. Some results have already been published
[6, 7] but the methodology is further developed in this paper.

Thus Figure 2, modified by the fact that all the walls are rigid and that the source acts
inside the cavity, is at the centre of the description. Variational formulation is followed
by finite element discretization, a sub-structuring of the finite element matrix providing a
form very similar to that of the analytical. Collocation, seen as some average values of

Figure 2. Elementary configuration.
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Figure 3. Academic situation.

the finite element form, and measurements are intricately related. The idea stemming from
the analytical method, of working with a limited number of measurements is then
transposed to the numerical model. The development of these measurements—also called
sampled data—into Taylor series provides estimates of the functional under study, i.e., the
acoustic level, and its first derivatives according to the impedance locations, whatever they
are. A conventional gradient algorithm then has to minimize the level. Here also some
results have already been presented [8] but once again including the work to be presented
here provides a deeper insight into this introductory approach and gives more results.

2. ANALYTICAL FORMULATION OF AN ACADEMIC SITUATION

2.1.         

The simplest problem found to deal with absorptive device locations is in a
three-dimensional half-space. Consider a simple acoustic source of given radial velocity
situated at xs and radiating in the three-dimensional half-space defined by zE 0 (cf.
Figure 3).

The boundary that limits the 3-D half-space is the plane G defined by z=0. On this
non-vibrating plane, absorptive devices are installed. They may be absorptive material or
Helmholtz resonators, and they are going to be considered throughout all the text as areas
Zi of admittance bi . The reader will also recognize them as impedances or impedance
patches.

An impedance patch is described by its area Z and the equation 1np(x)+ ikbp(x)=0
where p and 1np are respectively the acoustic pressure and its normal derivative on the
impedance. The normal is directed outwards from the acoustic domain, here in the zq 0
direction, and k is the acoustic wavenumber.

An elementary example illustrates this type of equation. If the device comprises a
vibrating piston composed of a mass m, a stiffness constant r, and a damping coefficient
c, it vibrates under the action of the acoustic pressure p applied on it and its normal
displacement satisfies (−mv2 + ivc+ r)un = pZ. When adding the coupling with the
acoustic domain through the displacement by saying that the air particles move like the
piston at the interface, the acoustic dynamic equation is 1np= rv2un on Z. Eliminating
the displacement between the two equations results in 1np+ikbp=0 on Z where
b= rcZv/[cv+i(mv2 − r)].

Everywhere on G except on the impedance patches Zi , written as G�Zi , the rigid behavior
is described by un =0: that is, 1np=0.

In the acoustic space, the waves satisfy the wave equation, i.e., the Helmholtz equation
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for a sinusoidal wave, written in the complex domain with a time dependence e+ivt. The
source velocity is such that the right side of the Helmholtz equation is −1.

Thus, the direct problem (see Figure 3) consists of finding the acoustic pressure p(x) such
that (D+ k2)p(x)=−d(x− xs ) inside the half-space V defined by zQ 0, 1np=0 on G�Zt

where Zt 0Z1 *Z2 * · · ·*ZNz if there are Nz impedance patches, 1np+ikbp=0 on Zt ,
and limr:a r(1rp+ikp)=0.

This type of problem is solved by taking advantage of the known elementary solution
which satisfies almost all the same equations, in particular the Helmholtz equation in the
acoustic domain. Indeed, let G(x, x') be the solution of (Dx + k2)G(x, x')=−d(x− x')
inside the half-space V defined by zQ 0, 1nG=0 on G with no impedance on G, and
limr:a r(1rp+ikp)=0

The elementary solution is itself built from the known elementary solution in the entire
3-D space, that has the form e−ikr/4pr where r is the distance between source and observer.
The perfectly rigid boundary G is a perfect mirror on which acoustic waves radiated
by the source reflect, as if the reflecting waves were originating from the image source
of the true source through the mirror. The total solution is the sum of the waves
generated by the true source and its image as indicated on Figure 4. Thus, G(x, x') is
(e−ikr1/4pr1)+ (e−ikr2/4pr2) and r1 = r2 = r when x and/or x' are on G, leading to

G(x, x')=
e−ikr

2pr
.

What is called the Green theorem is the key to obtaining the pressure p from the
elementary solution G(x, x'). Denoting H=(Dx + k2) and for x $V, one has

gV

(GHp− pHG) dV=−gV

G(x, x') d(x− xs ) dx+gV

p(x) d(x− x') dx.

Integration by parts will reveal the boundary conditions. The boundary 1V of the domain
V is composed of the plane G with the impedance patches and of a fictitious hemispherical
boundary as distant as possible from the domain of interest. On this fictitious boundary,
both p and G satisfy the same condition, called the Sommerfield condition, which says
that the waves reaching the hemispherical boundary propagate through it and never
return. Notice that at the points where G meets the hemispherical boundary, things are
not quite so clear since at such points two different conditions co-exist. This is because
these points, as far as possible from the domain, have no influence on the solution p and
so they are ignored. Upon taking into account what has been said, the integration by parts
leads to

gV

(GHp− pHG) dV=gG

[G(x, x')1np(x)− p(x)1nG(x, x')] dx,

Figure 4. Image source method.



       335

i.e.,

−G(xs , x')+ p(x')= =gG

[G(x, x')1np(x)− p(x)1nG(x, x')] dx,

and, with x and x' playing the same role in G, this results in

p(x)=G(x, xs )+gG

[G(x, x')1np(x')− p(x')1n'G(x, x')] dx'.

Finally with 1nG=0 on G and 1np=0 on G�Zt ;

p(x)=G(x, xs )+gZt

G(x, x')1n'p(x') dx'=G(x, xs )− ikb gZt

G(x, x')p(x') dx'. (1)

Suppose that 1np were imposed on Zt . The solution p(x) with x$V would originate from
two types of sources: the source inside the domain V which gives G(x, xs ) and a continuous
set of velocity sources (since 1np and the velocity vn are linked through the dynamic acoustic
equation) on Zt . In fact the latter sources depend on the pressure in V and on Zt . As only
G(x, x') appears in the boundary integral, the integral describing a single layer of sources
is called a simple layer integral and equation (1) is true for x$V*G.

2.2.   

With one impedance only and with the hypothesis that p(xz )= pz has a constant value
on Z, form (1) has now become

p(x)1G(x, xs )− ikbp(xz ) gZ

G(x, x') dx'

which can be written as

px 1 px0 − ikb0gZ

G(x, x') dx'1pz . (2)

When x:xz , it follows pz 1 (1+ ikb fZ G(xz , x') dx')−1pz0, whence

px 1 px0 − ikb0gZ

G(x, x') dx'101+ ikbgZ

G(xz , x') dx'1
−1

pz0. (3)

In view of the aim of this paper, it is fundamental to notice at this stage of the procedure
that the pressure in V with impedance patches on G can be predicted from data in V

without patches on G: i.e., with G perfectly rigid everywhere (1np=0). When V is that of
a vehicle, its boundary 1V, possibly vibrating but without linings such as trim panels in
aircraft for example, will play the same role as that of G, without linings.

With two impedances (Zt =Z1 *Z2), and with the same hypothesis, form (1) becomes

p(x)1G(x, xs )− ikbp(xzi ) gZ1

G(x, x') dx'− ikbp(xz2) gZ2

G(x, x') dx',



.   . 336

which can be written as

px 1 px0 − ikb0gZ1

G(x, x') dx'1pz1 − ikb0gZ2

G(x, x') dx'1pz2,

or

px 1 px0 −Wikb gZ1

G(x, x') dx', ikb gZ2

G(x, x') dx'w6pz1

pz27, (4)

where �. , . � represents a row vector and {:} a column vector.
When x:xz1, it follows that pz1 1 pz10 − ikb(fZ1 G(xz1, x') dx')pz1 − ikb(fZ2 G

× (xz1, x') dx')pz2.
When x:xz2, it follows that pz2 1 pz20 − ikb(fZ1 G(xz2, x') dx')pz1 − ikb(fZ2 G(xz2, x')

× dx')pz2, or

1+ ikb gZ1

G(xz1, x') dx' ikb gZ2

G(xz1, x') dx'
pz1

=
pz10G

G

G

G

G

K
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G
G

G

G

G
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~
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~

ikb gZ1

G(xz2, x') dx' 1+ ikb gZ2

G(xz2, x') dx'
pz2 pz20

,

whence

px 1 px0 −Wikb gZ1

G(x, x') dx', ikb gZ2

G(x, x') dx'w

×
1+ikb gZ1

G(xz1, x') dx' ikb gZ2

G(xz1, x') dx'
−1

pz10G
G

G

G

G

K

k

G
G

G

G

G

L

l

~
_

_
~

ikb gZ1

G(xz2, x') dx' 1+ ikb gZ2

G(xz2, x') dx'
pz20

, (5)

and so the knowledge of what happens when G is perfectly rigid allows one to predict what
is going to happen when G is lined with impedance patches. For the sake of simplicity,
equation (5) can be written in the form

px 1 px0 − ikb�G(x, xzi )�[Iij +ikbG(xzi , xzj )]
−1{pzj0}.

2.3.          ‘‘’’

2.3.1. Asymptotic integral form and spot ‘‘measurements’’
Consider one sole impedance. The asymptotic form of equation (2) is obtained

when x= xm is ‘‘far’’ from the impedance and when Z is ‘‘small’’. Indeed, with xz the
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impedance centre,

f(x)=
1
2p gZ

e−ik=x− x'=

=x− x'= p(x') dx'1 p(xz )
2p gZ

e−ik=x− x'=

=x− x'= dx'

and if x is far from x'=x− x'= hardly varies on Z as x' sweeps across Z, resulting in
f(x)1 (p(xz )Z/2p) e−ik=x− xz =/=x− xz =, and thus

p(x)= p0(x)− ikb(Z/2p) e−ikd.z/d.z p(xz ), with d.z = =x− xz =. (6)

p(xz ) is accessible when x$Z:xz : i.e., d:0. Indeed the integral f(x) calculated in the
vicinity of xz is

lim
r:0 gZ

e−ikr

r
dr=lim

r:0 guR(u) g r dr du
e−ikr

r
=P, whence p0(xz )=01+ ikb

P
2p1p(xz ),

with P, the impedance perimeter when circular (for a square impedance, P=3·52a, where
a is the side of the square). As a reminder: p0(xz ) or pz0 is the pressure at the impedance
location but without the impedance; p(x) or px is the pressure at x with the impedance
present; p(xz ) or pz is the pressure at the impedance location with the impedance present.

The asymptotic form of the integral equation (3) is thus

p(xm )= p0(xm )− ikb0Z
2p

e−ikdmz

dmz 101+ ikb
P
2p1

−1

p0(xz ). (7)

In the case of a number Nz of impedances, Zt =Z1 *Z2 *Z3 · · ·*ZNz . In particular
with two impedances Z1 and Z2 of which the centres are xz1 and xz2, equation (1) becomes

p(x)=G(x, xs )− ikb gZ1

G(x, x')p(x') dx'− ikb gZ2

G(x, x')p(x') dx',

and for ‘‘small’’ Z1 and Z2,

p(x)1G(x, xs )− ikbp(xz1) gZ1

G(x, x') dx'− ikbp(xz2) gZ2

G(x, x') dx'.

Also, one knows that for x far from xz1 and xz2, fZi
G(x, x') dx'1 (Zi /2p) e−ikdzi/d.zi , with

dzi = =x− xzi =, and, for x going towards xz1 or xz2, fZi G(x, x') dx'1Pi /2p .
In these conditions, with pzi = p(xzi ), one obtains

p(x)= p0(x)− ikbWZ
2p

e−ikd.z1

d.z1

,
Z
2p

e−ikd.z2

d.z2 w6pz1

pz27, (8)

leading to, when x:xz1 and x:xz2, with Pi =P[i,

Pz1 = pz10 − ikb
P
2p

pz1 − ikb
Z
2p

e−ikdz1z2

dz1z2

pz2,

Pz2 = pz20 − ikb
Z
2p

e−ikdz2z1

dz2z1

pz1 − ikb
P
2p

pz2.
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that is,

$ 1+ ikbP/2p

ikb(Z/2p) e−ikdz2z1/dz2z1

ikbZ/2p e−ikdz1z2/dz1z2

1+ ikbP/2p %6pz1

pz27=6pz10

pz207,

and the asymptotic form of equation (5) is

1+ ikb
P
2p

ikb
Z
2p

e−ikdz1z2

dz1z2

−1

pz10G
G

G

K

k

G
G

G

L

l

~
_

_
~pm = pm0 − ikbWZ

2p

e−ikdmz1

dmz1

Z
2p

e−ikdmz2

dmz2 w ikb
Z
2p

e−ikdz2z1

dz2z1

1+ ikb
P
2p

pz20
. (9)

Equation (9) can be written as pm = pm0 + pmz where pm0 is the ‘‘primary’’ pressure (i.e., in
the domain with rigid boundaries) at the microphone location xm and where pmz is the
modification to be brought to this pressure in order to take into account the impedances.
Note that pmz = aT·B−1·c if Nm =1 and pmz =A·B−1·c if not (bold capitals are matrices, bold
letters are column vectors). The expression is immediately generalized to Nz impedances
patches.

Equation (9) is said to be composed of spot measurements because the impedance
patches have been reduced to spots through the fact that they possess only one value of
the pressure on each. The integral have also been given only one value each, and will later
be given the meaning of measurable transfer functions.

2.3.2. Impedance location optimization and results
The acoustic level is known from the acoustic pressure at the ‘‘microphones’’. By

considering several microphones m and a number Nz of impedances located at xz , the
mean-squared pressure is

J(xz)= >pm >2 = >pm0>2 +2R(pmz* · pm0)+ >pmz>2 = Jz . (10)

In this form J is not a sound level but as it is directly related to the sound level, one may
take the liberty of calling it the sound level.

Due to interference, Jz is greater or less than J0 = >pm0>2 according to the impedance
locations xz . The analytical form of pmz leads to a closed form of {Jz, z}. Indeed {Jz, zi} equals
{2R(pmz,zi* · pm )} with, of course, pmz,zi =A,zi · B−1 · c−A · B−2 · B,zi · c+A · B−1 · c,zi . (a* is
the transpose conjugate of a).

In these conditions, a gradient algorithm gives the locations xz which minimize J. This
minimization is said to be obtained from an infinity of measurements because pmz is known
whatever xz from the knowledge of G(x, xzi ) and G(xzi , xzj ), whatever xzi and xzj are.

With nine microphones and from one to ten 20 cm square impedances, and for a wave
number equal to 1·6, the optimization tests (without constraints other than a limitation
in order for the impedances not to overlap) result in Table 1. Due to the approximation
made for the calculation, there are consequences for the geometrical situation at the origin
of Table 1. Calculations have been carried out in the 3D half-space by making the acoustic
pressure constant on each impedance patch Zi and by making them very small when seen
from the microphones. The source thus must be far from the boundary G, where the Zi

are situated, and the same applies to the microphones. Furthermore the control
microphones must be far from the source in order for the pressure there to be affected by
the presence of the impedances. All these constraints lead to negligible effects of impedance
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T 1

Results of the optimization obtained in the academic situation

Nm =9, J0 =4·7975×10−4

ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV
Nz 1 2 3 4 5 6 7 8 9 10

Initial xz 3·0 4·0 3·0 2·0 4·0 5·0 5·0 5·0 5·0 5·0
– 8·0 6·0 7·0 8·0 6·0 6·0 6·0 6·0 6·0

– 9·0 10·0 10·0 9·0 10·0 10·0 10·0 10·0
– 13·0 16·0 15·0 15·0 15·0 15·0 15·0

– 18·0 18·0 18·0 18·0 18·0 18·0
– – 20·0 20·0 20·0 20·0 20·0
– – – 22·0 22·0 22·0 22·0
– – – – 24·0 24·0 24·0
– – – – – 26·0 26·0
– – – – – – 28·0

Initial Jz 72 76 66 71 73 51 43 45 46 45

Final xz 5·44 5·53 5·53 5·53 5·53 5·53 5·24 5·28 5·28 5·28
– 5·30 5·28 5·28 5·30 5·28 5·53 5·53 5·53 5·53
– – 10·55 10·55 10·55 10·55 10·55 10·55 10·55 10·55
– – 17·72 14·70 14·70 14·70 14·70 14·70 14·70
– – 17·72 17·72 17·72 17·72 17·72 17·72
– – 20·37 20·37 20·37 20·37 20·37
– – 22·88 22·64 23·03 22·94
– – 23·03 22·64 22·74
– – 25·24 25·24
– – 27·56

Final Jz 61 48 43 40 38 35 33 31 29 26

locations. It is simply required that these effects be visible, as for the time being one is
concerned only with the examination of the methodology and of the optimization; the
results in dB are of no interest.

In Table 1, J0 = >pm0>2 is expressed in (N m−2)2. The impedance patch locations, of
admittance equal to 1, vary along Ox and the coordinates of their centres are given in m.
Initial locations are almost arbitrary.

The displacements between initial and final locations may be noticed. For example with
four impedances, one of them moves from 13 m to 17·7 m. It is also remarkable that the
optimized locations remain stable when the number of impedances is increased. For
example from Nz =3 to 10, one of the locations found is always 10·55 m. This could mean
that, in the present situation, the inter-influences between patches are negligible. Regarding
the values of the mean-squared pressure Jz , only the third and the fourth decimals have
been written in the table. Despite the fact that the results in dB are of no interest here,
two occurrences have to be noted. First, there exist impedance locations which amplify
the sound level at the microphones (situation with two impedances located anywhere
before optimization). Secondly, it appears in the example that one well located impedance
is more efficient than five poorly located impedances, two well located impedances are more
efficient than six poorly located impedances, and three well located impedances are more
efficient than ten poorly located impedances.

Almost all the technical ingredients needed to deal with the problem of optimizing the
impedance locations are now available thanks to the analytical approach. But this latter
approach is totally inadequate when dealing with more complicated geometry and to give
an idea of the possible order of magnitude for the attenuation in more realistic situations.
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With the aim of obtaining information in a cavity, the following section is concerned with
a simple case, but now the methods must be able to cope with any geometry.

3. NUMERICAL DESCRIPTION OF A CAVITY WITH IMPEDANCES ON ITS WALLS

3.1.      

A three-dimensional cavity is now under study. Its volume is similar to that with which
it is intended to work in the future, and the frequency of concern is around 70 Hz. Before
dealing with external sources and vibrating walls, the present chapter sets out to develop
the previous technical ingredients with non-vibrating walls and thus with a source inside
the cavity. Figure 5 shows the situation. The interior source is arbitrarily situated on the
ceiling. The walls are scattered with impedance patches Zi . For each of them the equation
is 1np(x)+ ikbp(x) =0. The admittance will be the same for every patch and of value 1.
Where there is no impedance the walls are described by 1np(x)=0. The volume where the
sound attenuation is sought is called Vm ; the subscript indicates that it is the volume of
the control microphones. The boundary of the acoustic domain V is now 1V.

The direct problem consists here in finding the pressure p(x) which satisfies the following
equations: (D+ k2)p(x)= g(xs ) with x$V and where xs is the location of the velocity
source; 1np(x)=0 on 1V�Zt where Zt is the part of the boundary with the impedances;
1np(x)+ ikbp(x)=0 on Zt .

For the low frequency range, three methods are in competition to deal with the problem:
the modal theory, the boundary integral method and the finite element method. The modal
theory will no longer be appropriate once the geometry becomes less regular; the boundary
integral method based on boundary integral equations has the great drawback of having
to recalculate all the matrices when the frequency changes. For the interior problem,
whatever the geometry, the finite element method is arguably the best. However, not
keeping the boundary integral method, technically speaking, does not mean that its
philosophy cannot be exploited, as will be shown.

The finite element discretizes not the differential equations themselves, but a
weak form of them. The associated weak form of the problem is
�v, (D+ k2)p(x)�V = �v, g(xs )�V[v(x), a function belonging to a space function to be
defined. The inner product �.,.�D is in the complex field C. As long as �.,.�D has a subscript
to indicate a domain, it is an inner product; if not �.,.� represents a row vector. The weak
form merely says that f(x)=0 in V and fV q(x)f(x) dx=0[q(x) are equivalent. The weak

Figure 5. Numerical situation.
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form, integrated by parts, reveals some of the boundary conditions. It is called the
variational form and is

−�9v, 9p�V + k2�v, p�V + �v, 1np�1V = �v, g(xs )�V

[v(x)$H1(V) and p(x)$H1(V),

or

−�9v, 9p�V + k2�v, p�V −ikb�v, p�1V = �v, g(xs )�V

[v(x)$H1(V) and p(x)$H1(V),

The variational form can be seen as a variation of the Lagrangian L=−T+U−W
(where T, U, W are respectively the kinetic and potential energies, the work of the external
conservative forces, expressed in force-like quantities) with the work of the
non-conservative forces on the boundary on the right-hand side:

−�9dp, 9p�V + k2�dp, p�V − �dp, g(xs )�V =+ikb�dp, p�1V

[dp(x)$H1(V) and p(x)$H1(V),

The only information given by the function spaces is that the functions must be derivable
and integrable.

All the integrals of the variational form are of the following type: �v, u�D = fD v*u dD,
where D represents V or 1V. The integrals are calculated piece by piece: i.e.,

fD v*u dD= sE
e=1 fDe v*u dDe with D=D1 *D2 *D3 · · ·*DE , and Di +Dj =f.

Each elementary domain De , called an element, is a simple geometrical form like a
segment in 1-D, a triangle or a rectangle in 2-D, a tetrahedron or a hexahedron in 3-D,
and the vertices are called nodes. One node usually belongs to several neighbouring
elements, except at the corner of the global domain where they are counted only once. (This
is a simplified description of the method which is, in fact, far more complex).

Inside each elementary domain De , the functions w(x) which are not derivatives are
approximated by w(x)= sI

i=1 Ni (x) wi , where i indicates the ith node of the element De ,
which has a total of I nodes. The functions Ni (x) are defined only in De , are of value 1
at node i and of value 0 at the other nodes of De . They are polynomial. Thus wi equals
w(xi ) with xi the co-ordinates of node i. The Ni (x) are called interpolating nodal functions.
This results in

gDe

v*u dDe = �vj� gDe

{Nj (x)}�Ni (x)� dx{ui},

the integral giving rise to an elementary matrix. When the functions represent derivatives,
the derivatives of the interpolating nodal function are under the sign integral. The sum
sE

e=1 has its matricial equivalent operation, called assembling, which provides the global
matrix.

Here the 3-D rectangular domain is discretized with hexahedric elements with eight
nodes, leading to a trilinear interpolation inside each element. The boundary 1V is thus
made up of rectangular faces with a bilinear interpolation. For the sake of simplicity, an
absorptive device has the same shape and size as the faces on 1V.
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T 2

Comparison between the theoretical and numerical eigenfrequencies situated around 70 Hz

1 m n Theoretical eigenfrequencies (Hz) Numerical eigenfrequencies (Hz)

1 0 1 f1 =61·6 f1 =62·3
0 1 2 f2 =64·5 f2 =65·0
1 1 0 f3 =70·8 f3 =71·5
0 0 3 f4 =72·9 f4 =74·2
1 0 2 f5 =74·6 f5 =75·4
1 1 1 f6 =74·9 f6 =75·6

Inside each elementary domain De , the solution is sought in the form

p(x)= si Ni (x)pi ,

where the interpolating functions Ni (x) are trilinear in the volume and bilinear on the faces,
and where the pi are the nodal values of the pressure.

The matricial form of the discretized variational formulation is now
(−[F]+ k2[G]− ikb[m]){p}= {g} where the addition (or the substraction) of ikb[m]
occurs only for the nodes of the faces with impedances and where the columns {p} and
{g} are respectively the nodal values of the pressure and of the excitation.

While the matrices F and G are built by using a finite element code, the terms of matrix
m, easily calculated by hand, are directly entered into the code. Indeed, for a sole square
element of dimensions h× h, the calculation of fh

0 dx fh
0 dy Ni (x, y)Nj (x, y) with bilinear

functions Ni (x, y) results in the matrix

4 2 1 2

2 4 2 1
[m]=G

G

G

K

k
1 2 4 2

G
G

G

L

l

.

2 1 2 4

It must be said that the finite element technique is largely used today because it is really
efficient without requiring extensive knowledge of mathematics. The price to pay seems
to be in the great number of lines in the computer programs.

To illustrate briefly this technique, Table 2 compares eigenfrequency values, in the
cavity with perfectly rigid walls, with analytical eigenfrequency values. The numerical
resonances were identified by sweeping the frequency and noting the cases where the
mean-squared pressure had high values. Care was taken for the source not to be
located at a modal node.

3.2.        

Let −[F]+ k2[G]= [A0] be the matrix associated with the case of perfectly rigid walls.
The equation to be solved is

([A0]− ikb[m]){p}= {g}, or ([I]− ikb[A0]−1[m]){p}=[A0]−1{g}=−[A]{g}= {p0}.

The ith column of the matrix −A is the response to a unitary excitation applied to the
ith component of g, inside the cavity with rigid boundaries, A corresponding to the Green
function of the analytical formulation.

As m concerns only the nodes of the elements adjacent to a wall, with a face simulating
an impedance, while matrix A0 concerns all the nodes of the cavity, the adding of ikbm
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to A0 has to be taken in the matrix assembling sense. As for the product A−1
0 m0−Am,

it is a Nt ×Ng matrix, where Nt is the total number of nodes and where Ng is the number
of nodes on the impedances. Clearly −Am represents relations between nodes in the cavity
and nodes on the absorptive materials whose sense will be given later on. p0 is the nodal
pressure values column vector generated by the excitation, were the walls perfectly rigid.

Upon indexing by n the nodes on the domain V* 1V�Zt and as before indexing by g

the nodes on the devices on the domain Zt , the substructuring used for the problem is

0$[In ]
[0]

[0]
[Ig ]%+ikb$[Ann ]

[Agn ]
[Ang ]
[Agg ]%$[0]

[0]
[0]

[mgg ]%16pn

pg7=6pn0

pg07. (11)

The first matricial line leads to the same form as equation (2) or (4) and, more importantly
here, removing {pg} from both matricial lines results in

{pn}= {pn0}−ikb[Angmgg ]([Ig ]+ ikb[Aggmgg ])−1{pg0}. (12)

More precisely, with the ‘nodal microphones’ located inside Vm , i.e., somewhere in
V* 1V�Zt , and with m indexing the nodes of the microphones, the previous equation is

{pm}= {pm0}−ikb[Amgmgg ]([Ig ]+ ikb[Aggmgg ])−1{pg0}.

When compared with the analytical form

px 1 px0 − ikb�G(x, xzi )�[Iij +ikbG(xzi , xzj )]
−1{pzj0},

the pressure on the microphones in the cavity with rigid walls is recognized as well as the
modification brought from the pressure at the impedance locations but without the
impedances. Moreover it will be seen that [Gmg ]= [Amgmgg ] and [Ggg ]= [Aggmgg ] are almost
transfer functions between impedances and microphones and auto/inter-influences of the
impedances. Such an equation represents the problem with data only from the cavity with
rigid boundaries. In fact, the substructuring of the finite element matrix is carried out to
obtain the Green function in the cavity with rigid walls, and the elementary function is
used in the same way as in the boundary integral equation with a simple layer only.

4. SOUND LEVEL MINIMIZATION FROM A FINITE NUMBER OF MEASUREMENTS

4.1.       

In the numerical model built here one impedance expands on a face area of an
hexahedric element (which has a face on a wall) and is thus described by four nodes. The
intention is to use measurements for impedance positioning, among them acoustic pressure
where absorptive materials are going to be positioned. Implicitly an impedance location
is defined by the co-ordinates of one point, namely the device centre, the dimensions of
which are far smaller than the wavelength of the frequency concerned (say a square or
circular absorptive device of 0·20 cm side or diameter). Thus only one pressure value,
instead of the four values at the four nodes, has to be known.

The choice is between imposing relations on the four nodes before calculation in order
to obtain the same value at each node and averaging the four pressure nodal values after
calculation. The first approach is inappropriate here as it leads to a combination of a nodal
approximation almost everywhere except at the location where the impedance is not yet
installed, with a constant value pressure approximation, resulting in the matrix of the
cavity with rigid walls which depends on the future impedance location! Such an approach
must be abandoned in favour of the second choice. Dealing with mean nodal pressure
values where the impedance is going to be located has consequences for the numerical
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transfer function between the absorptive device and one interior node (microphone). Other
consequences occur in the transfer functions between impedances, i.e., the auto- and
inter-influences, and the averaged matrix will be deduced to obtain one value only for the
auto and inter-influences. The numerical measurements coming from mean values of
matrix or vector components are closely linked to the collocation technique seen during
the analytical chapter.

The simplest situation with one microphone and only one device provides the description
of the averages required. One begins with

pm = pm0 − ikb�Amgmgg�([Ig ]+ ikb[Aggmgg ])−1{pg0},

also written as

pm = pm0 − ikb�Gmg�([Ig ]+ ikb[Ggg ])−1{pg0},

where Nm =1 and Ng =4, as a four-node element represents here one impedance.
The matrix Gmg , the dimensions of which are 1×4, corresponds to the integral

fZ G(xm , x') dx' seen in the analytical form, expanded at the nodes of the impedance.
Naturally the integral is synthesized by adding the distributed values, i.e.,

Gmz = s
g=1,4 Gmg ,

giving one term only.
The matrix ([Ig ]+ ikb[Ggg ])−1 originates from {pg0}=([Ig ]+ ikb[Ggg ]){pg} and corre-

sponds to the term pz0 = (1+ ikb fZ G(xz , x') dx')pz representing the pressure where the
device is to be located, given the pressure at the same place but in the presence of the device.

With

pz = 1
4 s

g=1,4 pg ,

the 4×4 matrix in the factor of {pg} is replaced by the column vector obtained by totalling
the four columns. Having in mind the analytical form of the autoinfluence integral at the
impedance centre xz and with

pz0 = 1
4 s

g=1,4 pg0,

one now gives the column vector one value only, equal to the average of its four
components. Both previous operations are summed up by totalling all columns and all
rows of ([Ig ]+ ikb[Ggg ]) divided by the matrix dimension, here 4. Such a definition of an
average matrix has been used to make the only value (1+ ikbGzz )=1 +
ikb fZ G(xz , x') dx' correspond to the 4×4 matrix ([Ig ]+ ikb[Ggg ]). (The identity matrix
[Ig ] is given the value 1).

A very simple example illustrates what has been just written. The matrix equation is

6p10

p207=$ac b
d%6p1

p27=6ap1 + bp2

cp1 + dp27,

with p1 and p2 replaced by their average value p, the equation is now

6p10

p207=6(a+ b)p
(c+ d)p7,
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With only the average value p0 = (p10 + p20)/2 considered, the equality is reduced to
p0 = [{(a+ b)+ (c+ d)}/2]p. The 2×2 matrix has been replaced by only one value, the
sum of its columns and rows and divided by its dimension.

To return to the problem, with one microphone and two impedances the formulation is

pm = pm0 − ikb��Amg1�[mg1g1], �Amg2�[mg2g2]�0$[Ig1]
[0]

[0]
[Ig2]%

+ikb$[Ag1g1]
[Ag2g1]

[Ag1g2]
[Ag2g2]%$[mg1g1]

[0]
[0]

[mg2g2]%1
−1

6pg10

pg207,

where [mg1g1]= [mg2g2]=m, leading to

pm = pm0 − ikb��Amg1�[mgg ], �Amg2�[mgg ]�0$[Ig1]
[0]

[0]
[Ig2]%

+ikb$[Ag1g1]
[Ag2g1]

[mgg ]
[mgg ]

[Ag1g2]
[Ag2g2]

[mgg ]
[mgg ]%1

−1

6pg10

pg207,

In accordance with previous definition, the auto- or inter-influences calculations Gzizj are
obtained by the product [Ggigj ]= [Agigj ]m averaged at the end of the operation. The
procedure is valid whatever the impedance number. Finally the finite element matrix has
been submitted to a substructuring and an averaging to take the form

pm = pm0 − ikb �Gmzi� ([I]+ ikb[Gzizj ])
−1 {pzj0} . (13)

zcv zXXXcXXXv zcv
dim 1×Nz dim Nz ×Nz dim Nz ×1

The finite element model is now able to simulate measurements in the following way:
(a) the averaged nodal pressure value on an impedance simulates the measurement of the
pressure at its centre; (b) the addition of the row vector components representing the
transfer function between the device nodes and the microphone simulates the measurement
of the transfer function between the device centre and the microphone multiplied by the
impedance area; (c) the averaged matrix of the auto- and inter-influences simulates
measurements of the auto- and inter-influences multiplied by the impedance area.

In a 3-D rectangular cavity (Ox=3 m, Oy=4 m, Oz=7 m and for a frequency of
69 Hz) the results of such a procedure are in accordance with those directly obtained from
the model (with neither substructuring nor averages). For example, Figure 6 shows
attenuation over 280 nodes when only one impedance sweeps all of one face of the cavity.
It turns out that the arbitrary frequency of 69 Hz is on an anti-resonance but it has been
observed that, had the frequency been on a resonance, Figure 6 would have shown great
reduction for the impedance on the (modal) anti-node of the pressure mode, in agreement
with, for example, references [4, 5].

4.2.            

   1- 

The whole formulation, both analytical and numerical, has been developed in order to
predict what the sound level will be in the presence of impedances, from the knowledge
of certain measurements taken in the cavity with rigid walls and of the admittance value.
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Figure 6. Attenuation over 280 interior nodes when one impedance sweeps all of one face of the cavity.

The measurements in question are as follows (see Figure 7): the primary pressure field
pm0 at the Nm control microphones; the primary pressure field at some points xt located on
the wall(s) from which the primary pressure field and its derivatives have to be deduced
whatever the point xz considered on the wall(s); some transfer functions Gms between
sources on the wall(s) and the control microphones, from which the transfer functions Gmz

and their derivatives have to be deduced whatever the point xz considered on the wall(s);
some transfer functions Gst between sources and microphones on the wall(s), from which
the auto- and inter-influences Gzizj and their derivatives have to be deduced whatever the
points xzi and xzj considered on the wall(s).

The functionals Jz and {Jz, z} will then be accessible, given a finite number of
measurements.

The quantities deduced from the measurements are estimates calculated from a Taylor
series. In 1-D, the method leads to continuous estimates. Only the main features of the
method are described here as it has been largely developed in reference [2].

Let a function f(x) be of complex value while the variable x is in R. In a one-dimensional
case the pressure pz0(xz ), the transfer functions Gmz (xm , xz ) (without paying attention to the
impedance areas) and the auto-influences (not the inter-influences) Gzz (xz , xz ) are of this
type of function f(x).

Function f(x) is of fj value when x= xj for j=1, L. The xj are at a distance dxj from
x, with dxj = x− xj . The Taylor series is

Figure 7. Measurements in the cavity with rigid walls.
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Figure 8. Estimation of the transfer function between one impedance patch and one microphone from sampled
transfers.

fj = f(x)− dxj /1! f,x (x)+ dx2
j /2! f,xx (x)+ rj (dxj ),

or

fj = �f(x), f,x (x), f,xx (x)�8 1
−dxj

dx2
j /29+ rj = cT · uj + rj .

The column c̃ made up of estimates of c, minimizes the residues rj . More precisely, c̃
minimizes a weighted sum of the residues in order to give increasingly greater weight to
those sampled values of f the nearer xj is to x:

min
c 0 s

L

j=1

wjr̄jrj1=min
c 0 s

L

j=1

wj ( fj − cT · uj )( fj − cT · uj )1.

The minimum value of the quadratic function of c is reached when the variation is zero,
leading to

0 s
L

j=1

wj [ūjuT
j ]1c̃= s

L

j=1

wj ūj fj .

Let Gmz(xm , xz ) take the place of f(x). The role of x is now played by xz . The goal is
to estimate the values of Gmz and Gmz, z at xz . The data available are the K values, called
sampled values of the function or sampled data, Gmk (xm , xsk ) when the ‘‘source’’ is located
at xsk . The role of the sampling points xj in the previous paragraph are now played by
the sampling points xsk.

When one takes into account the weighting window which diminishes the influence of
the sampled data Gmk the farther xsk is from xz , only the nearest points xsk to xz need be
considered. Figure 8 indicates that the transfer function Gmz

and its derivative Gmz ,z are
estimated from the knowledge of the transfer functions Gmk , named also sampled transfers,
at the few points xsk in the vicinity of xz .

With dkz = xz − xsk , the Taylor series is

Gmk =Gmz
− dkzGmz ,z + dkz2/2 Gmz ,zz + rk (dkz ).

In fact, there are five such equations corresponding to the five points xsk nearest to xz . One
can take the liberty of saying that the corresponding values of k are 1 to 5. The weighting
window is a triangular window of which the summit is at xz . The estimates obtained,
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Figure 9. Comparison of the sound level with its estimate. w, Sampled J; ——, interpolated J;
· · · · · · ·, primary field.

presented in a row vector, are �Gmz
, Gmz ,z , Gmz ,zz�. The calculation of Gmz, zz is of no other use

than to increase the accuracy of Gmz ,z and, a fortiori, on Gmz
.

By now, everything is ready to work with the functional and its derivatives according
to the location of a sole impedance as long as the sampled data—pressures, transfer
functions and auto-influences—are taken at the centers of the element faces along a line,
here vertical, on a wall of the cavity (here x=3 m, y=1·25 m, L=14). The comparison
of J(xz ) calculated by the numerical values obtained when the impedance occupies each
of the L locations, while J	 calculated by the estimates from the sampled data, shows good
agreement (cf. Figure 9). J	 .z calculated with the estimates from the sampled data, follows
the variations of J	 (cf. Figure 10).

At this step, with only one impedance patch under study, it is possible to make an
attempt to interpret Figures 9 and 10. The acoustic pressure inside the cavity with perfectly
rigid walls is established via modes. As the present frequency is at an anti-resonance, there
are essentially two modes at work. These modes are silhouetted on the walls and
particularly on the line where the absorptive device is to be installed. The impedance acts
less efficiently when it is at a weak pressure location. Figure 9 shows places of total

Figure 10. Estimate of the derivative of the sound level. ——, J; - - - -, J,z ; · · · · · · ·, primary field.



(a)

xσ1 xζi xσ2 xτ1 xζj xτ2

(b)

xσ1 xζi xσ2 xτ1 xζj xτ2

       349

Figure 11. First calculation of the inter-influences’ estimates from sampled transfers. (a) First part of the
procedure; (b) second part of the procedure.

inefficiency which are the nodes of pressure, taking into account the composition of the
two modes. Moreover Figure 10 shows the irregular form of J	 ,z near the ceiling (around
z=7 m). As the velocity source is at the ceiling, many evanescent modes exist at this height
and the action of the absorptive device is also irregular. This is merely an attempt at
interpretation and should not be taken for granted.

For a complex valued function f(x, y) with variables x and y in R, the situation is
different. Each of the interinfluences Gzizj (xzi , xzj ) is such a function. Three possible ways
of dealing with the estimation shown in reference [7] exist but only one of them gives
satisfactory results. Before developing it, notice that the reciprocity principle ought to lead
to Gzizj =Gzjzi , written Gij =Gji , and Gzizj,zi =−Gzizj,zj , written Gij,i =−Gij, j . Here point xzi is
accompanied by its neighouring sampling points xsk with k=1, 5. Similarly point xzj is
accompanied by the sampling points xt1 with l=1, 5. The sampled values Gskt1(xsk , xt1) are
among the data from which it is intended to estimate Gzizj (xzi , xzj ) and Gzizj,zj (xzi , xzj ). One
procedure to obtain them could be as follows.

For each of the xz , i.e., for l=1, 5, the calculation of the estimates carried out as before
results in �Gil , Gil,i , Gil,ii�. From Gil with l=1, 5 the same type of calculation gives
�Gij , Gij, j , Gij, jj�. Figure 11 gives an image of the process when xzi and xzj are each
accompanied by two sampling points only, in order to make the figure easier to read.
Graph(a) shows the estimation of Gil =Gzit1(xzi , xt1) in a dotted line, from Gs1t1 and Gs2t1

in a continuous line, which could be named ‘‘first-hand data’’. In the same way
Gi2 =Gzit2(xzi , xt2) would be obtained. Graph (b) shows the estimation Gij =Gzizj (xzi , xzj ) in
a dotted line, from Gi1 and Gi2 now available, and which could be named ‘‘second-hand
data’’.

Another procedure of estimation of the inter-influence between impedance patches could
also be as follows.

For each of the xsk , i.e., for k=1, 5 the calculation of the estimates carried out as before
results in �Gkj , Gkj, j , Gkj, jj�. From Gkj with k=1, 5 the same type of calculation gives
�Gij , Gij,i , Gij,ii�. Figure 12 gives an idea of the process, if points xzi and xzj had had only
two sampling points. Graph (a) shows the estimation of G1j =Gs1zj (xs1, xzj ) from first-hand
data and graph (b) shows the estimation of Gij from second-hand data made up of Gkj ,
k=1, 2.

The expected equality Gij =Gji can be well observed, but the expected equality
Gij,i =−Gij, j less so. However, one of the derivatives is always better than the other. In
the situation of Figure 13, one impedance z2 sweeps the line while another, called z1, is
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Figure 12. Second calculation of the inter-influences’ estimates from sampled transfers. (a) First part of the
procedure; (b) second part of the procedure.

fixed on the line but outside a sampling point. No exact value of the inter-influence exists.
That is why Figure 13 compares the estimate of the inter-influence between both
impedances with the known inter-influence between the sampling points and the one
nearest to Z2. With a larger number of sampling points, the one nearest to Z2 is still nearer
to Z2 and the comparison between the estimate of the inter-influence and the known value
of it are in good agreement (cf. Figure 14). Figure 15 shows that one of the derivatives
is better than the other.

4.3. 1-    

The problem consists in finding the optimal locations for one or more impedances along
a line on a wall of the cavity.

Numerical sampling data to play the role of measurements are recorded.
The nodal pressures {pg0} are first recorded and they are given their associated measured

pressures {pz0}. In the present situation, the number of nodes concerned by the sampling
locations of the impedances is Ng =30 and the number of sampling centre locations is
Nz =14. In the future a refined mesh will increase Ng (typically 200) to improve the

Figure 13. Graph of the estimate of Gij from 14 sampled data. w, Sampled G12; ——, estimated G12. First
impedance at z=1·33.
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Figure 14. Graph of the estimate of Gij from 41 sampled data. Key as Figure 13, First impedance at z=1·33.

numerical approximation while the goal is to use the smallest possible number of
measurements Nz (typically 10).

[Gmg ] is not recorded explicitly. The Nz =14 sampling points, representing the impedance
centres, being chosen, the matrix [Gmg ] is built from [A−1

0 ] by extracting the Nm ×4 matrices
[Amgi ], each of them describing the relation between the control microphones and the 4
nodes of one impedance with center zi . Then each [Amgi ] is multiplied by m and the result
is summed up for each microphone to represent the transfer function (multiplied by the
impedance area). All the synthesized transfer functions are organised to obtain the
measurements [Gmz ]. Here Nm =1 or 8 or 280 or 945 and Ng =30 while Nz =14.

[Ggg ] is not recorded explicitly either. The 4×4 matrix [Agigj ] is extracted from [A−1
0 ] and

describes the relation between the 4 nodes of one impedance with centre zi , and the 4 nodes
of impedance with centre zj . Then [Agigj ] is multiplied by m. Finally the average value of
this matrix leads to the matrix of measurements [Gzizj ]. All the measurements are organised
into the matrix [Gzz ].

Figure 15. Graph of the estimates of Gij,i and Gij,j . ——, G12; - - - -, G12,2; .–.–.–., −G12,1. First impedance
at z=1·33.
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T 3

Results of the optimization for one impedance patch with 280 observation points

Initial zz 4·1 2·1
Final zz 4·83 1·79

J 4·6921 4·7191

The measurements obtained are the inputs of the calculations of the estimates made
during minimisation by a gradient algorithm.

The optimisation occurs under a constraint of non-overlapping, in order for the
impedances to be well differentiated from each other or, at worst, juxtaposed. Each patch
measures 0·5 m×0·5 m. The admittance is equal to 1 and the frequency is 69 Hz.

4.3.1. Optimization of only one impedance; Table 3
The situation is the same as that shown in Figures 9 and 10. No inter-influence exists

and the descent algorithm is applied with Nm =280 and on the line x=3 m, y=1·25 m.
In Figures 9 and 10, the minima are approximately z=1·75 m and z=4·80 m. Table 3
shows that z=4·83 m when the initial location is 4·1 m and z=1·79 m when the initial
location is 2·1 m. The final values of Jz are those of Figures 9 and 10.

4.3.2. Optimization at one point (Nm =1) (optimisation on the line x=3 m and y=0·25 m);
Table 4

In Table 4, for Nz =1, the initial impedance location is arbitrarily at z=1 m, leading
to the final location at z=0·25 m. This final location gives one an idea of what the initial
locations for two patches could be. They move from (1 m, 2 m) to (0·25 m, 0·75 m). Thus
the initial locations are not totally arbitrary. The case of Nz =14 is of no interest here
regarding the optimization as the entire line is covered with impedances, but it does show
that this does not give the greatest attenuation.

Table 4 reminds one that some locations increase J0 (Nz =2 with 1 m and 2 m as initial
locations) and also provides two important pieces of information. From Nz =3 to 9, two
favourable zones for attenuation seem to appear, one at about 0·85 m, where the
impedances gather, and the other at around 6 m where another group of impedances
gathers. As soon as Nz e 10, the patches are inevitably outside these favourable zones with
the consequence that the attenuation decreases. The optimum is reached with Nz =9 where
the best attenuation is of approximatley 4·5 dB.

4.3.3. Optimization at a microphone antenna (Nm =8) (line x=3 m and y=0·25 m);
Table 5

In Table 5, two initial situations amplify J0 (Nz =12 and 13). The case Nz =13 is not
changed into an attenuation by the optimization but the amplification is slightly reduced.
When Nz =14, Jz has the same value as J0 and the 14 patches are totally inefficient.

Beyond Nz =5 the attenuation decreases. If what has been said in the previous
paragraph is true, only one favourable zone could possibly exist here in the neighborhood
of 2·5 m.

When the number of observation points, i.e., the number of control microphones,
increases, it is more difficult to obtain a significant attenuation. The optimum at Nz =5
is only of approximately 1·4 dB.

The reader will notice that the initial locations often are well situated due to experience
which makes one choose the initial locations from the preceding final locations as above.
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4.3.4. Optimization over one third of the domain (Nm =280, here the domain Vm does not
have its base on x0y) (line x=3 m and y=0·25 m); Table 6

Table 6 shows that almost all the initial locations amplify J0 (with 14 impedances, the
sound level in the cavity with rigid walls is amplified up to 1·7 dB). From among them,
only the case where Nz =8 is not changed into an attenuation. Beyond Nz =8, the
calculation time is really long.

The optimal situation is with Nz =6, giving an attenuation of 0·22 dB. Two groups of
impedances are visible, around 0·75 m and around 5·6 m. They already appear at Nz =4.

4.3.5. Optimization over the entire domain (Nm =945) (line x=3 m and y=0·25 m);
Table 7

Here again two groups of impedances, at 1·8 m and at 4·7 m, allow one to obtain an
optimal attenuation of 0·1 dB with Nz =4. This miniscule attenuation comes from taking
into consideration the whole volume of the cavity in the minimization of the acoustic level.
Beyond Nz =7, locations are not given in Table 7 due to the long calculation time.

T 4

Results of the optimization for impedance patches with 1 observation point

Nm =1, J0 =1·8726×10−2 (N/m2)2

ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
Nz 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Initial zz 1·0 1·0 0·5 0·5 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25
– 2·0 1·0 1·0 0·75 0·75 0·75 0·75 0·75 0·75 0·75 0·75 0·75 0·75
– – 1·5 1·5 1·25 1·25 1·25 1·25 1·25 1·25 1·25 1·25 1·25 1·25
– – – 5·0 5·0 3·0 2·0 1·75 1·75 1·75 1·75 1·75 1·75 1·75
– – – – 6·0 5·0 3·5 3·0 4·5 3·0 3·0 2·75 2·3 2·25
– – – – – 6·0 5·0 4·0 5·0 4·75 4·25 3·75 3·0 2·75
– – – – – – 6·0 5·0 5·5 5·25 4·75 4·25 3·75 3·25
– – – – – – – 6·0 6·0 5·75 5·25 4·75 4·25 3·75
– – – – – – – – 6·50 6·25 5·75 5·25 4·75 4·25
– – – – – – – – – 6·75 6·25 5·75 5·25 4·75
– – – – – – – – – – 6·75 6·25 5·75 5·25
– – – – – – – – – – – 6·75 6·25 5·75
– – – – – – – – – – – – 6·75 6·25
– – – – – – – – – – – – – 6·75

Initial att. (dB) 0·31 −0·01 1·41 1·96 2·87 2·02 2·14 1·53 4·36 3·63 3·41 2·98 1·77 1·40

Final zz 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25
– 0·75 0·75 0·75 0·75 0·75 0·75 0·75 0·75 0·75 0·75 0·75 0·75 0·75
– – 1·25 1·25 1·25 1·25 1·25 1·25 1·25 1·25 1·25 1·25 1·25 1·25
– – – 5·26 5·43 5·10 1·75 1·75 1·75 1·75 1·75 1·75 1·75 1·75
– – – – 6·0 5·61 5·33 5·04 4·75 4·25 3·75 2·47 2·25 2·25·
– – – – – 6·18 5·83 5·54 5·25 4·75 4·25 3·75 3·01 2·75
– – – – – – 6·35 6·04 5·75 5·25 4·75 4·25 3·75 3·25
– – – – – – – 6·54 6·25 5·75 5·25 4·75 4·25 3·75
– – – – – – – – 6·75 6·25 5·75 5·25 4·75 4·25
– – – – – – – – – 6·75 6·25 5·75 5·25 4·75
– – – – – – – – – – 6·75 6·25 5·75 5·25
– – – – – – – – – – – 6·75 6·25 5·75
– – – – – – – – – – – – 6·75 6·25
– – – – – – – – – – – – – 6·75

Final att. (dB) 0·72 1·55 2·00 2·47 3·02 3·56 4·07 4·09 4·48 4·32 3·86 3·05 1·79 1·40
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T 5

Results of the optimization for impedance patches with eight observation points

Nm =8, J0 =2·4887×10−1 (N/m2)2

ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
Nz 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Initial zz 4·0 2·0 2·0 2·0 2·0 1·5 1·0 1·0 1·0 1·0 1·0 0·8 0·3 0·25
– 4·0 2·5 2·5 2·5 2·0 1·5 1·5 1·5 1·5 1·5 1·3 0·8 0·75
– – 3·0 3·0 3·0 2·5 2·0 2·0 2·0 2·0 2·0 1·8 1·3 1·25
– – – 3·5 3·5 3·0 2·5 2·5 2·5 2·5 2·5 2·4 1·9 1·75
– – – – 4·0 3·5 3·0 3·0 3·0 3·0 3·0 2·9 2·4 2·25
– – – – – 4·0 3·5 3·5 3·5 3·5 3·5 3·5 3·0 2·75
– – – – – – 4·0 4·0 4·0 4·0 4·0 4·0 3·5 3·25
– – – – – – – 4·5 4·5 4·5 4·5 4·6 4·1 3·75
– – – – – – – – 5·0 5·0 5·0 5·1 4·6 4·25
– – – – – – – – – 5·5 5·5 5·6 5·2 4·75
– – – – – – – – – – 6·0 6·2 5·75 5·25
– – – – – – – – – – – 6·7 6·25 5·75
– – – – – – – – – – – – 6·75 6·25
– – – – – – – – – – – – – 6·75

Initial att. (dB) 0·03 0·23 1·81 1·31 1·29 1·39 1·02 1·13 0·89 0·63 0·29 −0·13 −0·86 0·00

Final zz 2·67 2·44 2·15 2·00 1·65 1·50 1·05 1·01 1·13 1·02 1·41 1·02 0·77 0·25
– 2·94 2·65 2·50 2·15 2·00 1·55 1·51 1·63 1·52 1·91 1·52 1·27 0·75
– – 3·15 3·00 2·65 2·50 2·05 2·01 2·13 2·02 2·41 2·02 1·77 1·25
– – – 3·50 3·15 3·00 2·55 2·51 2·63 2·52 2·91 2·52 2·27 1·75
– – – – 3·65 3·50 3·05 3·01 3·13 3·02 3·41 3·01 2·77 2·25·
– – – – – 4·00 3·55 3·51 3·63 3·52 3·91 3·51 3·27 2·75
– – – – – – 4·05 4·01 4·13 4·02 4·41 4·01 3·76 3·25
– – – – – – – 4·51 4·63 4·52 4·91 4·51 4·26 3·75
– – – – – – – – 5·13 5·02 5·41 5·01 4·76 4·25
– – – – – – – – – 5·52 5·91 5·53 5·26 4·75
– – – – – – – – – – 6·41 6·12 5·75 5·25
– – – – – – – – – – – 6·70 6·25 5·75
– – – – – – – – – – – – 6·75 6·25
– – – – – – – – – – – – – 6·75

Final att. (dB) 0·31 0·82 1·21 1·32 1·44 1·39 1·02 1·13 0·91 0·61 0·33 0·10 −0·46 0·00

5. SUMMARY AND CONCLUSION

With a view to the passive acoustic control of the sound level in the satellite
compartment of the Ariane 5 launcher, this paper is an introduction to the original
question of how to optimize impedance locations on the walls of an acoustic cavity. The
introductory investigation was made in two steps: an analytical formulation of an
academic situation followed by a numerical formulation in a 3-D rectangular cavity.

In a half-space limited by a perfectly rigid boundary, the Helmholtz equation and
Sommerfeld radiation condition govern the acoustic solution. Let G(x, x') and pm0 be the
elementary solution with the rigid boundary and the acoustic pressure at a ‘‘microphone’’
located at xm . With one impedance only, the pressure becomes pm = pm0 + pmz where pmz

is a modification added to pm0 in order to take into account the impedance. This
modification has an asymptotic form when the microphone is sufficiently far from the
boundary and thus also far from the impedance situated at xz . The acoustic level is written
J(xz )= =pm =2 = J0 +2R (p*mz · pm0)+ =pmz =2.
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T 6

Results of the optimization for impedance patches with 280 observation points

Nm =280, J0 =3·7995 (N/m2)2

ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV
Nz 1 2 3 4 5 6 7 8

Initial zz 4·0 4·0 2·0 1·0 1·5 1·3 1·3 1·3
– 6·0 4·0 2·0 2·5 1·8 1·8 1·8
– – 6·0 4·0 4·4 2·5 2·8 2·5
– – – 6·0 4·95 3·5 3·5 3·5
– – – – 5·5 4·5 4·5 4·5
– – – – – 5·0 5·0 5·0
– – – – – – 5·5 5·5
– – – – – – – 6·2

Initial att. (dB) −0·1 −0·19 −0·19 −0·21 0·17 −0·23 −0·14 −0·34
Final zz 0·25 0·25 0·25 0·25 0·25 0·25 0·25 0·25

– 0·75 0·75 0·75 0·75 0·75 0·75 0·75
– – 1·25 1·25 1·25 1·25 1·25 1·25
– – – 5·26 5·43 5·10 1·75 1·75
– – – – 6·00 5·61 5·33 5·04
– – – – – 6·18 5·83 5·54
– – – – – – 6·35 6·04
– – – – – – – 6·54

Final att. (dB) 0·07 0·17 0·18 0·19 0·19 0·22 0·13 −0·06

Due to interferences, Jz is greater or less than J0 according to the impedance location.
Thanks to the closed form of pmz , Jz,z is analytically available, and a conventional descent
algorithm gives the minima. With still one microphone but more than one impedance,

T 7

Results of the optimization for impedance patches with 945 observation points

Nm =945, J0 =21·0614 (N/m2)2

ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV
Nz 1 2 3 4 5 6 7

Initial zz 4·0 4·0 2·0 2·0 2·0 1·0 1·0
– 5·0 4·4 3·0 3·0 2·0 2·0
– – 5·1 4·4 4·4 3·0 3·0
– – – 5·1 5·1 4·4 4·0
– – – – 5·7 5·1 4·6
– – – – – 5·7 5·2
– – – – – – 5·8

Initial att. (dB) −0·08 0·00 0·06 −0·17 −0·20 −0·25 −0·34
Final zz 4·75 4·51 1·82 1·45 1·75 1·46 1·13

– 5·01 4·55 1·95 4·01 1·96 1·63
– – 5·05 4·55 4·51 4·02 2·13
– – – 5·05 5·00 4·52 3·99
– – – – 5·50 5·02 4·49
– – – – – 5·52 4·99
– – – – – – 5·49

Final att. (dB) 0·04 0·09 0·10 0·11 0·09 0·08 0·01
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interactions between impedances occur. It has been observed that the impedances gather
at the preceding minima. Finally a table shows the results for an antenna made up of nine
microphones and for 1 to 10 impedances.

The first step, important in expliciting the methodology, cannot give any realistic order
of magnitude concerning the results. It now requires a numerical model dealing with a less
academic situation yet still following the analytical methodology, to provide information
about possible attenuations.

A 3-D rectangular acoustic cavity is described by the finite element method. With rigid
walls, the Helmholtz equation only governs the solution as rigid boundary conditions are
natural in the variational form. Nodal approximation leads to the numerical solution. If
A0 is the finite element matrix with rigid walls, A=−A−1

0 plays the role of the elementary
function of the interior problem. Let pV0 be the nodal solution, in particular at certain
nodes called microphones. With some impedances on the walls of the cavity, the pressure
becomes pV = pV0 + pVz where the modification pVz to be made develops as in the analytical
case thanks to a particular substructuring of the finite element matrix. The effects of one
impedance sweeping the entire surface of a wall have been shown, focusing on a particular
line on the wall for the 1-D optimization.

When speaking of data or measurements, it is implicitly understood that spot items
are used, while numerical modelling is based essentially on elements. A definition of
numerical measurements has to be given. To this end, imposing relations between the
four nodes of an element describing an impedance to obtain only one pressure value
on it, has been shown to give very poor results. The choice of an averaged value of
the four nodes has proved to be very efficient. So now, the whole analytical
formulation can be used.

Also thanks to the numerical averages used to define some measurements, an
estimation procedure was carried out leading to the modification pVz whatever the
impedance locations. The functionals Jz and {J,z} are determined from the following
limited number of measurements: the primary field pm0 at the control microphones; the
primary field pt0 at some points on the walls of the cavity; some transfer functions Gms

between sources on the walls and control microphones; some transfer functions Gst

between sources and microphones on the walls. The 1-D optimization is obtained here
also by a gradient algorithm. Within severe conditions (room of 84 m3, frequency of
69 Hz at an anti-resonance, 1-D optimization on one line on one wall of the cavity),
the order of magnitude obtained to date is as follows: 4 dB at one microphone; 1·4 dB
on an antenna made up of eight microphones; 0·2 dB for around one third of the cavity
volume (280 microphones); 0·1 dB for the entire cavity volume (945 microphones).

It has constantly been noticed that too many impedances prevent any attenuation,
and it seems that a phenomenon of impedance grouping exists.

The 1-D optimization results are currently under study to associate a modal
interpretation. A flexible wall submitted to an external plane wave will then be
considered to optimize the insulation of the walls by impedances inside the cavity.
Finally a 2D optimization has to be envisaged in a more appropriate geometry for our
ends.
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